US 6,192,405 B1

13

Address” property of the requester 108. If they match, then
the requester 108 is validated in step 145. If the addresses do
not match, an error 144 is issued. Step 146 involves veri-
fying that the user still has rights to the form they are
requesting. This is accomplished by issuing a
NWDSGetEffectiveRights() of the use object 102 for the
Forms Object 104 they have requested the NWDSGetEffec-
tiveRights operation determines the access privileges of the
user object 102 to the Forms object 104, taking into account
the user object’s 102 security equivalences, inherited
privileges, and inheritance masks. If step 147 determines
that such rights exist, the method proceeds to step 149 where
the rights are validated. If insufficient rights exist, an error
148 is issued.

In step 150, the request is acted upon. A reference
identifier to the Data Store 109, in this case the employee ID
attribute of the User object 102, is read to reference appro-
priate information from the Data Store 109. This reference
identifier acts as a link between the identities in the Distrib-
uted Directory 101 and the Data Store 109. In the case of a
“Form Request”, the form type is determined. If the form is
a populated form, the Forms Processor Server 112 interfaces
with the database 109 to read the appropriate data, populate
the form, and send a reply e-mail for delivery to the user 108.
The completed form is stored in the GW.NPS. HTMLFORM
field of the custom message. In the case of a “Form Submit”,
the Forms Processor Server 112 writes the submitted form
data to the database 109 and sends back a response to the
requester 108 indicating success or failure.

The Forms Processor Client 113 is implemented as a
GROUPWISE Custom 3rd Party Object (C3PO), which will
usually run on a client machine. This is an Ole Automation
Server that is loaded by the GROUPWISE Client. When the
GROUPWISE Client loads, it loads the Forms Processor
Client 113. The Forms Processor Client 113 is alerted that it
has just been loaded and initiates it’s own load process. FIG.
9 illustrates a flowchart 160 of steps performed by the Forms
Processor Client 113 during the load process. In the step 161,
an entry is added to the “File” menu and a button is added
to the tool bar in the GROUPWISE 111 user interface which
allows the user 108 to invoke a “Form Request” dialog. At
step 162, the custom message type for the Forms Processor
112 is registered. Then a unique icon is associated with the
new custom message type in step 163 to distinguish it from
other message types in the InBox. At step 164, the GROUP-
WISE data store (database schema) is extended to accom-
modate the following custom field definitions:

a. GW.NPS.ACT—alternate form identifier field.

b. GW.NPS.MSGDEF—field to hold the form name.

c. GW.NPS.SRCHKEY—field to hold the search key

(employee id).

d. GW.NPS.FORMDATA—field to hold submitted form

data.

e. GWNPS . HTMLFORM—field to hold requested form

data.

f. GW.NPS REQUEST—field to hold the request type.

g. GW.NPS.REQUESTER—field to identify the

requester/submitter.

h. GW.NPS.REQTARGET—field to identify request type

(other/self).

i. GW.NPS.OTHERTARGET—field to identify request

for other.

In step 165, the Forms Processor Client 113 is in “Ser-
vice” mode and waits for an appropriate command. When
the “Form Request” dialog is invoked in step 166, the Forms
Processor Client 113 presents the user 108 with a list of all

10

15

20

25

30

35

40

45

50

55

60

65

14

available forms on the “Form Request” dialog. This involves
reading the current authenticated NDS object 102 “Forms”
attribute, reading the “Forms” attribute of all the NDS
groups the current user is a member, reading each container
above the current authenticated object up to the [Root], and
place all values in an internal object list. At step 168, the user
108 simply double-clicks the form of interest on the list and
the request is submitted in step 169 to the Forms Processor
Server 112. The Forms Processor Server 112 processes the
request and responds with a custom message type, as dis-
cussed above.

The custom message is received in the GROUPWISE
InBox as a unique message type represented by it’s own
icon. The form data is viewed by double-clicking the custom
message in the InBox in step 170. The Forms Processor
Client 113 is alerted that a custom message it knows how to
handle has been selected. At step 171, the Forms Processor
Client 113 reads all of the custom field values from the
selected message. The GW.NPS. HTMLFORM data is saved
to a local file in step 172. Then, a custom viewer is launched
in step 173, which consists of an HTML browser for
displaying the contents of the form. Once the form is loaded
in the viewer, the form file from disk is deleted in step 174.
At step 175, if the form contains a “Submit” button and if the
button is clicked, the method will proceed to step 176 where
the Forms Processor Client 113 submits the form to the
Forms Processor Server 112 for processing. Step 176
involves retrieving the field names and field values from the
form and placing them in the GW.NPS.FORMDATA custom
field of the new submit message. Then, the values of the
custom fields in the received message are placed in the
custom fields of the new submit message. The new submit
message is then sent to the Forms Processor Server 112.

The computer system 100 provides the capability for
NDS/GROUPWISE clients to request and submit data from
a database 109 while leveraging NDS authentication and
using the secure transport of GROUPWISE. A GROUP-
WISE client with the Forms Processor Client 113 loaded can
request to request a form by clicking on the Request Form
tool bar button. This launches the Request Form dialog box.
Enumerated on this dialog box are the Form objects 104 the
user 108 has been granted rights to request. This is accom-
plished by reading the Form associations from the current
authenticated user object 102, the groups this user is member
of, and each of the containers above this user object up to
[Root]. The user 108 can then request one of the enumerated
forms from that dialog.

The NDS Form object 104 contains, as one of it’s
attributes, the address of the Forms Processor Server 112.
The GROUPWISE client uses this address to send the form
to the Forms Processor Server 112. The GROUPWISE client
with the Forms Processor Server 112 is prepared to process
any requests sent to it by requesting clients. Once a request
is received, this puts the Forms Processor Server 112 into
action. The received message custom fields are read, the
request type is determined and the proper action to taken. If
the Form type is “Populated Form”, the Forms Processor
Server interfaces with the database 109 to retrieve the
appropriate data for the requesting user. A Form Type of
“View” causes the Forms Processor Server 112 to interface
with the database 109 and return a form with Read-only
fields. An “Empty Form” type is returned immediately with
no interface to the database 109 required.

The Forms Processor Server 112 sends the appropriate
response to the Forms Processor Client 113. The response
message appears as a custom message in the GROUPWISE
InBox. The user 108 can then double-click the message to

